342199 2199 - ACS709 Current Sensor Carrier -75 to +75A

2199 - ACS709 Current Sensor Carrier -75 to +75A

Sensore di corrente basato sull' ACS709LLFTR della Allegro, con segnale di sovracorrente. Il sensore ha una tensione logica operativa di 3 - 5.5V e una sensibilità di 18.5mV/A a 3.3V. Fornisce in uscita una tensione analogica direttamente proporzionale alla corrente rilevata ed è in grado di misurare correnti fino a 75A.
Prezzi IVA inclusa
€ 9,89 Prezzo
€ 8,11 + VAT




This board is a simple carrier of Allegro’s ±75A ACS709 Hall effect-based linear current sensor with overcurrent fault output, which offers a low-resistance (~1.1 mΩ) current path and electrical isolation up to 2.1 kV RMS. The sensor has optimized accuracy for currents from -37.5 to 37.5 A, and the analog voltage output is linear for current magnitudes up to 75 A. The ratiometric output voltage is centered at VCC/2 and has a typical error of ±2%. It operates from 3 to 5.5 V, so it can interface directly to both 3.3 V and 5 V systems.

This current sensor is a carrier board or breakout board for Allegro’s ACS709LLFTR-35BB-T Hall effect-based linear current sensor with overcurrent fault output; we therefore recommend careful reading of the ACS709 datasheet before using this product. The sensor has an operating voltage of 3 – 5.5 V and an output sensitivity of 18.5 mV/A when Vcc is 3.3 V (or 28 mV/A when Vcc is 5 V). The following list details some of the sensor’s key features:

  • Optimized accuracy for bidirectional input current from -37.5 to 37.5 A, with a linear sensing range from -75 to 75 A (see warning note below for thermal limitations).
  • Conductive path internal resistance is typically 1.1 mΩ, and the PCB is made with 2-oz copper, so very little power is lost in the board.
  • Integrated shield greatly reduces capacitive coupling from current conductor to die and prevents offset drift in high-side applications.
  • Use of a Hall effect sensor means the IC is able to electrically isolate the current path from the sensor’s electronics (up to 2.1 kV RMS), which allows the sensor to be inserted anywhere along the current path and to be used in applications that require electrical isolation.
  • 120 kHz bandwith that can optionally be decreased by adding a capacitor across the board pins marked “FILT”.
  • High accuracy and reliability: typical total output error of 2% at room temperature with factory calibration, an extremely stable quiescent output voltage.
  • Automotive-grade operating temperature range of -40°C to 150°C.
  • User-settable overcurrent threshold: FAULT pin output latches low when current exceeds the configured threshold for a duration that can be set through the addition of an external capacitor.

The pads are labeled on the bottom silkscreen, as shown in the picture above. The silkscreen also shows the direction that is interpreted as positive current flow via the +i arrow.

Note: The sensor’s extended -75 to 75 A range should be limited to transient currents. In our tests, we found that the IC could tolerate 50 A for 20 seconds or 37.5 A for 150 seconds before exceeding its maximum temperature rating of 150°C. Therefore, unless you are taking special steps to keep the IC cool, we recommend limiting continuous currents to under 30 A. Even with a low conductive path resistance of 1.1 mΩ, the board can get hot enough to burn you when the current is in the tens of amps, and the IC does not feature any kind of over-temperature protection, so thermal issues should be taken into consideration for high currents.

Electrical connections

The only connections required to use this sensor are the input current (IP+ and IP-), logic power (VCC and GND), and the sensor output (VIOUT). All of the other pins are optional, as are the two external capacitors shown in the diagram:


The sensor requires a supply voltage of 3 – 5.5 V to be connected across the VCC and GND pads, which are labeled on the bottom silkscreen. The sensor outputs an analog voltage that is linearly proportional to the input current. The quiescent output voltage is VCC/2 and changes by 28 mV per amp of input current (when VCC = 5 V), with positive current increasing the output voltage and negative current decreasing the output voltage. For an arbitrary input current i (in amps), the sensor’s output voltage can be more generally represented as:


VIOUT = (0.028 V/A * i + 2.5 V) * VCC / 5 V


The VZCR pin is the voltage reference output pin and can be used as a zero current (0 A) reference. It will be approximately equal to VCC/2 and lets you more accurately compute the current from the VIOUT output voltage. The FILT pin lets you adjust the board’s bandwidth by adding a capacitor, CF, to ground (a ground pad has been added next to the FILT pin for convenience). Without any external filter capacitor, the bandwidth is 120 kHz. The datasheet provides more information on how the external filter capacitor affects bandwidth. The FAULT pin is normally high and latches low when the current exceeds the overcurrent fault switchpoint (Ioc). This switchpoint is set by the voltage applied to the VOC pin and is dependent on the voltage divider shown in the schematic diagram. By default, Ioc is set to 57 A, but it can be altered by adding external resistors to the voltage divider to change the VOC voltage. Once the FAULT pin is latched low, it can be reset by driving the FAULT_EN input low (this input is pulled high on the board). An external capacitor, COC, can be added to increase the overcurrent fault response time. Without this capacitor, the fault response time is typically under 2 us. For detailed information on using the overcurrent fault feature, including some key restrictions on the overcurrent threshold, please refer to the ACS709 datasheet (483k pdf).

Connection example (terminals not included):

The input current can be connected to the board in a variety of ways. Holes with 0.1″, 3.5 mm, and 5 mm spacing are available as shown in the diagram above for connecting male header pins or terminal blocks. For high-current applications, you can solder wires directly to the through-holes that best match your wires, or you can use solderless ring terminal connectors, as shown in the picture above. The large through-holes are big enough for #6 screws.

Mounting information

The board has two mounting holes on the logic side of the board. These mounting holes are 0.6" apart and are designed for #2 screws.

Included components

This board ships assembled with all surface mount components, and an 8×1 strip of 0.1″ header pins is included but not soldered in

Schematic diagram

Documents and Downloads

Tags prodotto

Usa gli spazi per tag separati. Usa virgolette singole (') per frasi.

Questions on 2199 - ACS709 Current Sensor Carrier -75 to +75A

No questions asked yet

Fai una domanda (Registrati oppure Esegui il Login ).
Fai una domanda (Registrati oppure Esegui il Login ).
  1. SparkFun Low Current Sensor Breakout - ACS712

    708883 SparkFun Low Current Sensor Breakout - ACS712

    The ACS712 current sensor measures up to 5A of DC or AC current.
    Tasse escluse:
    € 8,98
    IVA inclusa:
    € 10,96
  2. 1187 - ACS714 Current Sensor Carrier -30 to +30A

    341187 1187 - ACS714 Current Sensor Carrier -30 to +30A

    Sensore di corrente basato sull' ACS714 della Allegro. Può misurare fino a 30A e fornisce in uscita una tensione analogica difalse
    Tasse escluse:
    € 6,68
    IVA inclusa:
    € 8,15
  3. 1185 - ACS714 Current Sensor Carrier -5 to +5A

    341185 1185 - ACS714 Current Sensor Carrier -5 to +5A

    Sensore di corrente basato sull' ACS714 della Allegro. Questo sensore è in grado di misurare correnti fino a 5A e fornisce infalse
    Tasse escluse:
    € 7,44
    IVA inclusa:
    € 9,08

Se hai trovato questo prodotto ad un prezzo migliore, inviaci una segnalazione, faremo tutto il possibile per accontentarti.

Price Match

* Campi richiesti

Il nostro Reparto Vendite rispondera' entro 24 ore via e-mail.

Grazie per la tua fiducia in Robot Italy!