340961 961 - QTR-8RC Reflectance Sensor Array

961 - QTR-8RC Reflectance Sensor Array

This sensor module has 8 IR LED/phototransistor pairs mounted on a 0.375" pitch, making it a great detector for a line-following robot. Pairs of LEDs are arranged in series to halve current consumption, and a MOSFET allows the LEDs to be turned off for additional sensing or power-savings options. Each sensor provides a separate digital I/O-measurable output.
Categorie
Prezzi IVA inclusa
€ 9,89 Prezzo
€ 8,11 + VAT

Qty
 

Dettagli

This sensor module has 8 IR LED/phototransistor pairs mounted on a 0.375" pitch, making it a great detector for a line-following robot. Pairs of LEDs are arranged in series to halve current consumption, and a MOSFET allows the LEDs to be turned off for additional sensing or power-savings options. Each sensor provides a separate digital I/O-measurable output.

The QTR-8RC reflectance sensor array is intended as a line sensor, but it can be used as a general-purpose proximity or reflectance sensor. The module is a convenient carrier for eight IR emitter and receiver (phototransistor) pairs evenly spaced at intervals of 0.375" (9.525 mm). To use a sensor, you must first charge the output node by applying a voltage to its OUT pin. You can then read the reflectance by withdrawing the externally supplied voltage and timing how long it takes the output voltage to decay due to the integrated phototransistor. Shorter decay time is an indication of greater reflection. This measurement approach has several advantages, especially when coupled with the ability of the QTR-8RC module to turn off LED power:

  • No analog-to-digital converter (ADC) is required
  • Improved sensitivity over voltage-divider analog output
  • Parallel reading of multiple sensors is possible with most microcontrollers
  • Parallel reading allows optimized use of LED power enable option

The outputs are all independent, but the LEDs are arranged in pairs to halve current consumption. The LEDs are controlled by a MOSFET with a gate normally pulled high, allowing the LEDs to be turned off by setting the MOSFET gate to a low voltage. Turning the LEDs off might be advantageous for limiting power consumption when the sensors are not in use or for varying the effective brightness of the LEDs through PWM control.

This sensor was designed to be used with the board parallel to the surface being sensed.

The LED current-limiting resistors for 5 V operation are arranged in two stages; this allows a simple bypass of one stage to enable operation at 3.3 V. The LED current is approximately 20–25 mA, making the total board consumption just under 100 mA. 

Specifications

  • Dimensions: 2.95" x 0.5" x 0.125" (without header pins installed)
  • Operating voltage: 3.3-5.0 V
  • Supply current: 100 mA
  • Output format: 8 digital I/O-compatible signals that can be read as a timed high pulse
  • Optimal sensing distance: 0.125" (3 mm)
  • Maximum recommended sensing distance: 0.375" (9.5 mm)
  • Weight without header pins: 0.11 oz (3.09 g)

The QTR-8RC module has eight identical sensor outputs that, like the Parallax QTI, require a digital I/O line capable of driving the output line high and then measuring the time for the output voltage to decay. The typical sequence for reading a sensor is:

  1. Turn on IR LEDs (optional).
  2. Set the I/O line to an output and drive it high.
  3. Allow at least 10 μs for the sensor output to rise.
  4. Make the I/O line an input (high impedance).
  5. Measure the time for the voltage to decay by waiting for the I/O line to go low.
  6. Turn off IR LEDs (optional).

These steps can typically be executed in parallel on multiple I/O lines.

With a strong reflectance, the decay time can be as low as several dozen microseconds; with no reflectance, the decay time can be up to a few milliseconds. The exact time of the decay depends on your microcontroller’s I/O line characteristics. Meaningful results can be available within 1 ms in typical cases (i.e. when not trying to measure subtle differences in low-reflectance scenarios), allowing up to 1 kHz sampling of all 8 sensors. If lower-frequency sampling is sufficient, substantial power savings can be realized by turning off the LEDs. For example, if a 100 Hz sampling rate is acceptable, the LEDs can be off 90% of the time, lowering average current consumption from 100 mA to 10 mA.

We also have a Arduino library for these sensors.

Breaking the Module in Two

If you don’t need or cannot fit all eight sensors, you can break off two sensors and still use all 8 sensors as two separate modules, as shown below. The PCB can be scored from both sides along the perforation and then bent until it snaps apart. Each of the two resulting pieces will function as an independent line sensor.

Included Components

This module ships with a 25-pin 0.1" header strip and a 100 Ohm through-hole resistor as shown below.

You can break the header strip into smaller pieces and solder them onto your reflectance sensor array as desired, or you can solder wires directly to the unit or use a right-angle header strip for a more compact installation. The pins on the module are arranged so that they can all be accessed using either an 11×1 strip or an 8×2 strip.

The resistor is required to make the two-sensor array functional after the original eight-sensor array is broken into two pieces. This resistor is only needed once the board has been broken.

Specifiche

Part. No. : 1419

Tags prodotto

Usa gli spazi per tag separati. Usa virgolette singole (') per frasi.

Questions on 961 - QTR-8RC Reflectance Sensor Array

No questions asked yet

Fai una domanda (Registrati oppure Esegui il Login ).
Fai una domanda (Registrati oppure Esegui il Login ).
  1. Line Follower Kit PICAXE

    502015 Line Follower Kit PICAXE

    Kit di espansione per il Microrobot PICAXE, permette al Robot di seguire una linea disegnata sul suolo.
    Tasse escluse:
    € 19,08
    IVA inclusa:
    € 23,28
      Confronta
  2. BOT127 - Modulo Line Follower per Microbot

    502057 BOT127 - Modulo Line Follower per Microbot

    Questo modulo permette di aggiungere un secondo modulo line follower al microbot BOT120 permettendo di avere una maggiore prfalse
    Tasse escluse:
    € 14,30
    IVA inclusa:
    € 17,44
      Confronta
  3. RedBot Sensor - Line Follower

    711769 RedBot Sensor - Line Follower

    Sensore Line Follower. Add-on per il robot RedBot, consente al robot di individuare e seguire una linea.
    Tasse escluse:
    € 2,85
    IVA inclusa:
    € 3,48
      Confronta

Se hai trovato questo prodotto ad un prezzo migliore, inviaci una segnalazione, faremo tutto il possibile per accontentarti.

Price Match



* Campi richiesti

Il nostro Reparto Vendite rispondera' entro 24 ore via e-mail.

Grazie per la tua fiducia in Robot Italy!