342834 2834 - Pololu 12V, 1A Step-Down Voltage Regulator D24V10F12

2834 - Pololu 12V, 1A Step-Down Voltage Regulator D24V10F12

The compact D24V10F12 synchronous buck voltage regulator takes an input voltage of up to 36 V and efficiently reduces it to 12 V while allowing for a maximum output current of 1 A. T
Prices are VAT included
€8.15 Price
€6.68 + VAT

 

Details

The compact (0.5″ × 0.7″) D24V10F12 synchronous buck voltage regulator takes an input voltage of up to 36 V and efficiently reduces it to 12 V while allowing for a maximum output current of 1 A. This regulator offers typical efficiencies between 85% and 93% and has a very low dropout, so it can be used with input voltages as low as a few hundred millivolts above 12 V. The pins have a 0.1″ spacing, making this board compatible with standard solderless breadboards and perfboards

The D24V10Fx family of step-down voltage regulators features the Intersil ISL85410 1A synchronous buck regulator and generates lower output voltages from input voltages as high as 36 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) with typical efficiencies between 80% and 93%, which is much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. These regulators have a power-save mode that activates at light loads and a low quiescent (no load) current draw, which make them well suited for applications that are run from a battery. 

The different versions of this regulator all look very similar, so the bottom silkscreen includes a blank space where you can add your own distinguishing marks or labels. This product page applies to all five versions of the D24V10Fx family.

The SHDN pin can be used to put the board in a low-power state that reduces the quiescent current to approximately 10 µA to 20 µA per volt on VIN, and a PG (power good) output can be used to monitor the state of the regulator’s output voltage.

The regulators feature short-circuit/over-current protection, and thermal shutdown helps prevent damage from overheating. The boards do not have reverse-voltage protection.

Features

  • Input voltage: [output voltage + dropout voltage] to 36 V (see below for more information on dropout voltage)
  • Fixed 3.3 V, 5 V, 6 V, 9 V, or 12 V output (depending on regulator version) with 4% accuracy
  • Maximum output current: 1 A
  • Typical efficiency of 80% to 93%
  • 500 kHz switching frequency (when not in power-save mode)
  • 2 ms soft-start reduces in-rush current on power-up
  • 200 μA typical no-load quiescent current
  • Integrated over-temperature and over-current shutoff
  • Small size: 0.7″ × 0.5″ × 0.14″ (18 mm × 13 mm × 3.5 mm)

Using the regulator

Connections

The buck regulator has five connections: power good (PG). shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The “power good” indicator, PG, is an open-drain output that drives low when the regulator’s output voltage falls below 80% or rises above 120% of its target output voltage. This output is also actively held low for the duration of the regulator’s 2 ms soft-start period and while the regulator is being disabled by the SHDN input or by over-temperature or over-current fault conditions. An external pull-up resistor is generally required to use this pin.

The SHDN pin can be driven low (under 0.4 V) to turn off the output and put the board into a low-power state. There is a 100 kΩ pull-up resistor between the SHDN pin and VIN, so if you want to leave the board permanently enabled, the SHDN pin can be left disconnected. While the SHDN pin is being driven low, the current draw of the regulator is dominated by the current through the pull-up resistor and will be proportional to the input voltage. (At 36 V in it will draw about 360 μA.)

The input voltage, VIN, powers the regulator. Voltages between 3 V and 36 V can be applied to VIN, but the effective lower limit of VIN is VOUT plus the regulator’s dropout voltage, which varies approximately linearly with the load (see below for graphs of dropout voltages as a function of the load). Additionally, please be wary of destructive LC spikes (see below for more information).

The output voltage, VOUT, is fixed and depends on the regulator version: the D24V10F3 version outputs 3.3 V, the D24V10F5 version outputs 5 V, the D24V10F6 version outputs 6 V, the D24V10F9 version outputs 9 V, and the D24V10F12 version outputs 12 V.

The five connections are labeled on the back side of the PCB and are arranged with a 0.1″ spacing along the edge of the board for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1″ grid. You can solder wires directly to the board or solder in either the 5×1 straight male header strip or the 5×1 right-angle male header strip that is included.

Typical efficiency and output current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. This family of switching regulators typically has an efficiency of 80% to 93%, though the actual efficiency in a given system depends on input voltage, output voltage, and output current. See the efficiency graph near the bottom of this page for more information.

In order to achieve a high efficiency at low loads, this regulator automatically goes into a power-save mode where the switching frequency is reduced. In power-save mode, the switching frequency of the regulator changes as necessary to minimize power loss. This could make it harder to filter out noise on the output caused by switching.

Typical dropout voltage

The dropout voltage of a step-down regulator is the minimum amount by which the input voltage must exceed the regulator’s target output voltage in order to ensure the target output can be achieved. For example, if a 5 V regulator has a 1 V dropout voltage, the input must be at least 6 V to ensure the output is the full 5 V. Generally speaking, the dropout voltage increases as the output current increases. See the “Details” section below for more information on the dropout voltage for this specific regulator version.

LC voltage spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage (36 V), the regulator can be destroyed. In our tests with typical power leads (~30″ test clips), input voltages above 20 V caused spikes over 36 V.

If you are connecting more than 20 V or your power leads or supply has high inductance, we recommend soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 50 V.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

Dimensions

Size: 0.5″ × 0.7″ × 0.14″1
Weight: 1.0 g1

General specifications

Minimum operating voltage: 12.1 V2
Maximum operating voltage: 36 V
Maximum output current: 1 A
Output voltage: 12 V
Reverse voltage protection?: N
Maximum quiescent current: 0.2 mA3

Notes:

1 Without included optional headers.
2 For small loads; this voltage rises approximately linearly up to 12.8 V at 1 A output.
3 While enabled (SHDN = HIGH) with no load; while disabled it is proportional to the input voltage (360 μA when the input is 36 V).

 

Specifications

Part. No. : 2834

Product Tags

Use spaces to separate tags. Use single quotes (') for phrases.

Questions on 2834 - Pololu 12V, 1A Step-Down Voltage Regulator D24V10F12

No questions asked yet

Register or Login to ask a question.
Register or Login to ask a question.
  1. 2119 - Pololu Step-Up/Step-Down Voltage Regulator S7V7F5

    582119 2119 - Pololu Step-Up/Step-Down Voltage Regulator S7V7F5

    The S7V7F5 switching step-up/step-down regulator efficiently produces 5 V from input voltages between 2.7 and 11.8 V. Its abifalse
    Excl. Tax:
    €4.47
    Incl. Tax:
    €5.45
      Compare
  2. 2098 - Pololu 5V, 300mA Step-Down Voltage Regulator D24V3F5

    582504 2098 - Pololu 5V, 300mA Step-Down Voltage Regulator D24V3F5

    These buck (step-down) voltage regulators generate lower output voltages from input voltages as high as 42 V. They are switchfalse
    Excl. Tax:
    €4.19
    Incl. Tax:
    €5.11
      Compare
  3. 2121 - Pololu 5V Step-Up/Step-Down Voltage Regulator S10V4F5

    582505 2121 - Pololu 5V Step-Up/Step-Down Voltage Regulator S10V4F5

    This switching regulator uses the SEPIC topology to produce 5 V from input voltages between 2.5 V and 18 V. The wide input rafalse
    Excl. Tax:
    €4.71
    Incl. Tax:
    €5.75
      Compare
  4. 2850 - Pololu 5V, 2.5A Step-Down Voltage Regulator D24V25F5

    342850 2850 - Pololu 5V, 2.5A Step-Down Voltage Regulator D24V25F5

    This small synchronous switching step-down (or buck) regulator takes an input voltage of up to 38 V and efficiently reduces ifalse
    Excl. Tax:
    €25.00
    Incl. Tax:
    €30.50
      Compare
  5. 2831 - Pololu 5V, 1A Step-Down Voltage Regulator D24V10F5

    342831 2831 - Pololu 5V, 1A Step-Down Voltage Regulator D24V10F5

    The compact D24V10F5 synchronous buck voltage regulator takes an input voltage of up to 36 V and efficiently reduces it to 5false
    Excl. Tax:
    €6.68
    Incl. Tax:
    €8.15
      Compare
  6. 2830 - Pololu 3.3V, 1A Step-Down Voltage Regulator D24V10F3

    342830 2830 - Pololu 3.3V, 1A Step-Down Voltage Regulator D24V10F3

    The compact D24V10F3 synchronous buck voltage regulator takes an input voltage of up to 36 V and efficiently reduces it to 3.false
    Excl. Tax:
    €6.27
    Incl. Tax:
    €7.65
      Compare
  7. 2843 - Pololu 5V, 500mA Step-Down Voltage Regulator D24V5F5

    342843 2843 - Pololu 5V, 500mA Step-Down Voltage Regulator D24V5F5

    The compact D24V5F5 synchronous buck voltage regulator takes an input voltage of up to 36 V and efficiently reduces it to 5 Vfalse
    Excl. Tax:
    €7.00
    Incl. Tax:
    €8.54
      Compare
  8. 2587 - Breakout Board for microSD Card with 3.3V Regulator and Level Shifters

    342587 2587 - Breakout Board for microSD Card with 3.3V Regulator and Level Shifters

    This compact board breaks out the pins of a microSD card connector necessary to interface with the card through SPI (Serial Pfalse
    Excl. Tax:
    €10.00
    Incl. Tax:
    €12.20
      Compare
  9. 2855 - Pololu 12V, 2.2A Step-Down Voltage Regulator D24V22F12

    342855 2855 - Pololu 12V, 2.2A Step-Down Voltage Regulator D24V22F12

    This small synchronous switching step-down (or buck) regulator takes an input voltage of up to 36 V and efficiently reduces ifalse
    Excl. Tax:
    €8.79
    Incl. Tax:
    €10.72
      Compare
  10. 2857 - Pololu 3.3V, 2.6A Step-Down Voltage Regulator D24V22F3

    342857 2857 - Pololu 3.3V, 2.6A Step-Down Voltage Regulator D24V22F3

    This small synchronous switching step-down (or buck) regulator takes an input voltage from 4 V to 36 V and efficiently reducefalse
    Excl. Tax:
    €27.80
    Incl. Tax:
    €33.92
      Compare